Classic Clock

Rabu, 05 Juni 2013

BELAJAR TENTANG BIOGAS, MIKROORGANIME PENGHASIL BIOGAS DAN MEKANISMENYA

Private Library of Simamora, Helmut Todo Tua
Environment, Research and Development Agency
Samosir Regency Government of North Sumatera Province
INDONESIA


Berikut merupakan kutipan ilmiah dari media online yang sangat bermanfaat sehingga digunakan Penulis sebagai referensi pribadi.



BELAJAR TENTANG BIOGAS, MIKROORGANIME PENGHASIL BIOGAS DAN MEKANISMENYA

  
Bakteri metanogen merupakan salah satu jenis bakteri yang dapat menghasilkan sumber energi. Sumber energi yang dapat dihasilkan oleh bakteri ini adalah biogas. Biogas merupakan gas yang dilepaskan jika bahan-bahan organik difermentasi atau mengalami proses metanisasi. Proses fermentasi (penguraian material organik) tersebut terjadi secara anaerob (tanpa oksigen).
Biogas terdiri atas beberapa macam gas, antara lain :
  1. metana (55-75%),
  2. karbon dioksida (25-45%),
  3. nitrogen (0-0.3%),
  4. hydrogen (1-5%),
  5. hidrogen sulfida (0-3%), dan
  6. oksigen (0.1-0.5%). 

Persentase terbesar dalam biogas ini, metan, membuat gas ini mudah terbakar dan dapat disamakan kualitasnya dengan gas alam setelah dilakukan pemurnian terhadap gas metan.
Sumber pembuatan gas metan ini berasal dari bahan-bahan organik yang tidak memerlukan waktu yang terlalu lama dalam penguraiannya, seperti kotoran hewan, dedaunan, jerami, sisa makanan, dan sortiran sayur. Dalam menghasilkan gas metan ini, bakteri metanogen tidak bekerja sendiri. Terdapat beberapa tahap yang harus dilalui dan memerlukan kerja sama dengan kelompok bakteri yang lain. Berikut ini merupakan tahapan dalam proses pembentukan biogas :

1.      Hidrolisis
Hidrolisis merupakan penguraian senyawa kompleks atau senyawa rantai panjang menjadi senyawa yang sederhana. Pada tahap ini, bahan-bahan organik seperti karbohidrat, lipid, dan protein didegradasi menjadi senyawa dengan rantai pendek, seperti peptida, asam amino, dan gula sederhana. Kelompok bakteri hidrolisa, seperti Steptococci, Bacteriodes, dan beberapa jenis Enterobactericeae yang melakukan proses ini.
2.      Asidogenesis
Asidogenesis adalah pembentukan asam dari senyawa sederhana. Bakteri asidogen,Desulfovibrio, pada tahap ini memproses senyawa terlarut pada hidrolisis menjadi asam-asam lemak rantai pendek yang umumnya asam asetat dan asam format.
3.      Metanogenesis
Metanogenesis ialah proses pembentukan gas metan dengan bantuan bakteri pembentuk metan seperti Mathanobacterium, Mathanobacillus, Methanosacaria, dan Methanococcus. Tahap ini mengubah asam-asam lemak rantai pendek menjadi H2, CO2, dan asetat. Asetat akan mengalami dekarboksilasi dan reduksi CO2, kemudian bersama-sama dengan H2 dan CO2 menghasilkan produk akhir, yaitu metan (CH4) dan karbondioksida (CO2).
Penghasilan biogas dapat mencapai kondisi optimum jika bakteri-bakteri yang terlibat dalam proses tersebut berada dalam lingkungan yang nyaman. Berikut ini merupakan beberapa hal yang perlu diperhatikan agar bakteri-bakteri penghasil biogas dapat menghasilkan gas secara optimum, yaitu:
1.      Lingkungan abiotis
Bakteri yang dapat memproduksi gas metan tidak memerlukan oksigen dalam pertumbuhannya (anaerobik).  Oleh karena itu, biodigester harus tetap dijaga dalam keadaan abiotis (tanpa kontak langsung dengan Oksigen (O2)).
2.      Temperatur
Secara umum terdapat 3 rentang temperatur yang disenangi oleh bakteri, yaitu:
a.       Psikrofilik (suhu 0 – 25°C), optimum pada suhu 20-25°C
b.      Mesofilik (suhu 20 – 40°C), optimum pada suhu 30-37°C
c.       Termofilik (suhu 45 – 70°C), optimum pada suhu 50-55°C
Temperatur merupakan salah satu hal yang penting bagi pertumbuhan dan perkembangbiakan bakteri. Menjaga temperatur tetap pada kondisi optimum yang mendukung pertumbuhan dan perkembangbiakan bakteri, akan meningkatkan produksi biogas.
3.      Derajat keasaman (pH)
Bakteri asidogen dan metanogen memerlukan lingkungan dengan derajat keasaman optimum yang sedikit berbeda untuk berkembangbiak. pH yang rendah dapat menghambat pertumbuhan bakteri asidogenesis, sedangkan pH di bawah 6,4 dapat meracuni bakteri metanogenesis. Rentang pH yang sesuai bagi perkembangbiakan bakteri metanogenesis 6,6-7 sedangkan rentang pH bagi bakteri pada umumnya adalah 6,4-7,2. Derajat keasaman harus selalu dijaga dalam wilayah perkembangbiakan optimum bagi bakteri agar produksi biogas stabil.
4.      Rasio C/N bahan isian
Syarat ideal untuk proses digesti adalah C/N = 25 – 30. Nilai rasio C/N yang terlalu tinggi menandakan konsumsi yang cepat oleh bakteri metanogenisis, hal itu dapat menurunkan produksi biogas. Sedangkan rasio C/N yang terlalu rendah akan menyebabkan akumulasi ammonia sehingga pH dapat terus naik pada keadaan basa hingga 8,5. Kondisi tersebut dapat meracuni bakteri metanogen. Kadar C/N yang sesuai dapat dicapai dengan mencampurkan beberapa macam bahan organik, seperti kotoran dengan sampah organik.
Biogas yang dihasilkan oleh sekelompok bakteri yang telah diuraikan di atas, dapat dijadikan sebagai sumber energi alternatif untuk menggantikan sumber energi fosil yang saat ini semakin menipis jumlahnya. Meskipun sama-sama dihasilkan oleh mikroorganisme, namun pembentukan biogas tidak memerlukan waktu yang sangat lama seperti pembentukan energi fosil.
Prinsip Dasar Pembuatan Biogas
BIOGAS merupakan proses produksi energi berupa gas yang berjalan melalui proses biologis. Hal ini menyebabkan terdapatnya berbagai komponen penting yang berpengaruh dalam proses pembuatan biogas. Komponen biokimia (biochemist) dalam pembuatan biogas memerlukan perhatian penting. Proses kerja dari komponen tersebut dapat dijelaskan secara ilmiah, sehingga membuka peluang untuk diadakannya penelitian lebih lanjut.
Gas yang dapat dimanfaatkan sebagai energi dari pembuatan biogas adalah berupa gas metan. Gas metan ini diperoleh melalui proses dekomposisi bahan-bahan organik oleh mikroorganisme. Bahan-bahan organik yang dibutuhkan dapat diperoleh dengan sangat mudah, bahkan dapat diperoleh dalam limbah. Proses produksi peternakan menghasilkan kotoran ternak (manure) dalam jumlah banyak. Di dalam kotoran ternak tersebut terdapat kandungan bahan organik dalam konsentrasi yang tinggi.
Gas metan dapat diperoleh dari kotoran ternak tersebut setelah melalui serangkaian proses biokimia yang kompleks. Kotoran ternak terlebih dahulu harus mengalami dekomposisi yang berjalan tanpa kehadiran udara (anaerob). Tingkat keberhasilan pembuatan biogas sangat tergantung pada proses yang terjadi dalam dekomposisi tersebut.
Salah satu kunci dalam proses dekomposisi secara anaerob pada pembuatan biogas adalah kehadiran mikroorganisme. Biogas dapat diperoleh dari bahan organik melalui proses "kerja sama" dari tiga kelompok mikroorganisme anaerob. Pertama, kelompok mikroorganisme yang dapat menghidrolisis polimer-polimer organik dan sejumlah lipid menjadi monosakarida, asam-asam lemak, asam-asam amino, dan senyawa kimia sejenisnya.
Kedua, kelompok mikroorganisme yang mampu memfermentasi produk yang dihasilkan kelompok mikroorganisme pertama menjadi asam-asam organik sederhana seperti asam asetat. Oleh karena itu, mikroorganisme ini dikenal pula sebagai mikroorganisme penghasil asam (acidogen).
Ketiga, kelompok mikroorganisme yang mengubah hidrogen dan asam asetat hasil pembentukan acidogen menjadi gas metan dan karbondioksida. Mikroorganisme penghasil gas metan ini hanya bekerja dalam kondisi anaerob dan dikenal dengan nama metanogen. Salah satu mikroorganisme penting dalam kelompok metanogen ini adalah mikroorganisme yang mampu memanfaatkan (utilized) hidrogen dan asam asetat.
Metanogen terdapat dalam kotoran sapi yang akan digunakan sebagai bahan pembuatan biogas. Lambung (rumen) sapi merupakan tempat yang cocok bagi perkembangan metanogen. Gas metan dalam konsentrasi tertentu dapat dihasilkan di dalam lambung sapi tersebut. Proses pembuatan biogas tidak jauh berbeda dengan proses pembentukan gas metan dalam lambung sapi. Pada prinsipnya, pembuatan biogas adalah menciptakan gas metan melalui manipulasi lingkungan yang mendukung bagi proses perkembangan metanogen seperti yang terjadi dalam lambung sapi.
Metanogen membutuhkan kondisi lingkungan yang optimal untuk dapat memproduksi gas metan. Metanogen sangat sensitif terhadap kondisi di sekitarnya. Bahan organik dalam kotoran sapi dapat menghasilkan gas metan apabila metanogen bekerja dalam ruangan hampa udara. Oleh karena itu, proses pembuatan biogas dari kotoran sapi harus dilakukan dalam sebuah reaktor atau digester yang tertutup rapat untuk menghindari masuknya oksigen. Reaktor harus bebas dari kandungan logam berat dan sulfida (sulfides) yang dapat mengganggu keseimbangan mikroorganisme.
Jumlah metanogen dalam kotoran sapi belum tentu dapat menghasilkan gas metan yang diinginkan. Gas metan diperoleh melalui komposisi metanogen yang seimbang. Jika jumlah metanogen dalam kotoran sapi masih dinilai kurang, maka perlu dilakukan penambahan metanogen tambahan berbentuk strater atau substrat ke dalam reaktor.
Metanogen dapat berkembang dengan baik dalam tingkat keasaman (pH) tertentu. Lingkungan cair (aqueous) dengan pH 6,5 sampai 7,5 di dalam reaktor merupakan kondisi yang cocok bagi pembentukan gas metan oleh metanogen. Tingkat keasaman di dalam reaktor harus dijaga agar tidak kurang dari 6,2.
Untuk memperoleh biogas yang sempurna, ketiga kelompok mikroorganisme tadi harus bekerja secara sinergis. Keadaan lingkungan yang kurang baik akan menyebabkan ketiganya menjadi tidak optimal dalam menjalankan perannya masing-masing. Contohnya, jumlah kandungan bahan organik yang terlalu banyak dalam kotoran sapi akan membuat kelompok mikroorganisme pertama dan kedua untuk membentuk asam organik dalam jumlah banyak sehingga pH akan turun drastis. Hal itu akan menciptakan lingkungan yang tidak cocok bagi kelompok mikroorganisme yang ketiga. Akhirnya, gas metan yang dihasilkan akan sedikit, bahkan tidak menghasilkan gas sama sekali.
Untuk mencapai keberhasilan dalam proses pembuatan biogas diperlukan ketelitian untuk memberikan lingkungan yang optimal bagi pembentukan gas metan. Hal tersebut dapat dilakukan dengan pengontrolan terhadap berbagai aspek, seperti tingkat keasaman, kandungan dalam kotoran sapi (C/N), temperatur, hingga kadar air. Selain itu, reaktor yang digunakan harus memenuhi syarat dan kapasitasnya sesuai dengan jumlah kotoran sapi sebagai input.
Manfaat lainnya
Sisa kotoran sapi yang telah digunakan dalam proses pembuatan biogas dapat dimanfaatkan menjadi pupuk. Jika kandungan gas metan dalam kotoran sapi telah diperoleh, maka kotoran tersebut dapat diambil dari reaktor dan digunakan sebagai kompos. Pupuk kompos dapat menyuburkan tanah dan tidak mengandung bahan kimia, sehingga penggunaannya dapat mendukung gerakan pertanian organik (organic farming).
Teknologi pembuatan biogas ini sangat ramah terhadap lingkungan karena tidak meninggalkan residu dan emisi gas berbahaya. 
Biogas adalah gas mudah terbakar yang dihasilkan dari proses fermentasi bahan-bahan organik oleh bakteri-bakteri anaerob (bakteri yang hidup dalam kondisi kedap udara). Pada umumnya semua jenis bahan organik bisa diproses untuk menghasilkan biogas.
Meski demikian, hanya bahan organik homogen berbentuk padat maupun cair seperti limbah ternak yang cocok untuk sistem biogas sederhana. Di daerah yang banyak terdapat industri pemrosesan makanan seperti tahu, tempe, ikan pindang dan brem, limbahnya bisa diproses menjadi biogas sehingga limbah industri tersebut tidak mencemari lingkungan di sekitarnya. Hal ini memungkinkan karena limbah industri tersebut di atas berasal dari bahan organik yang homogen. Pada makalah ini pembahasan dibatasi hanya pada pengolahan limbah ternak menjadi biogas.
Limbah ternak adalah sisa buangan dari suatu kegiatan usaha peternakan seperti usaha pemeliharaan ternak, rumah potong hewan, pengolahan produk ternak, dan lain-lain. Limbah tersebut meliputi limbah padat dan limbah cair seperti feses, urin, sisa makanan, embrio, kulit telur, lemak, darah, bulu, kuku, tulang, tanduk, isi rumen, dan lain-lain. Semakin berkembangnya usaha peternakan, limbah yang dihasilkan semakin meningkat.
Total limbah yang dihasilkan peternakan tergantung dari species ternak, besar usaha, tipe usaha dan lantai kandang. Manure yang terdiri dari feses dan urin merupakan limbah ternak yang terbanyak dihasilkan dan sebagian besar manure dihasilkan oleh ternak ruminansia seperti sapi, kerbau, kambing, dan domba. Umumnya setiap kilogram susu yang dihasilkan ternak perah menghasilkan 2 kg limbah padat (feses), dan setiap kilogram daging sapi menghasilkan 25 kg feses .
Selain menghasilkan feses dan urin, dari proses pencernaan ternak ruminansia menghasilkan gas metan (CH4) yang cukup tinggi. Gas metan ini adalah salah satu gas yang bertanggung jawab terhadap pemanasan global dan perusakan ozon. Kontribusi emisi metan dari peternakan mencapai 20 – 35 % dari total emisi yang dilepaskan ke atmosfir. Di Indonesia, emisi metan per unit pakan atau laju konversi metan lebih besar karena kualitas hijauan pakan yang diberikan rendah. Semakin tinggi jumlah pemberian pakan kualitas rendah, semakin tinggi produksi metan .
Limbah ternak masih mengandung nutrisi atau zat padat yang potensial untuk mendorong kehidupan jasad renik yang dapat menimbulkan pencemaran. Suatu studi mengenai pencemaran air oleh limbah peternakan melaporkan bahwa total sapi dengan berat badannya 5000 kg selama satu hari, produksi manurenya dapat mencemari 9.084 x 107 m3 air. Selain melalui air, limbah peternakan sering mencemari lingkungan secara biologis yaitu sebagai media untuk berkembang biaknya lalat. Kandungan air manure antara 27-86 % merupakan media yang paling baik untuk pertumbuhan dan perkembangan larva lalat, sementara kandungan air manure 65-85 % merupakan media yang optimal untuk bertelur lalat .
Kehadiran limbah ternak dalam keadaan keringpun dapat menimbulkan pencemaran yaitu dengan menimbulkan debu. Pencemaran udara di lingkungan penggemukan sapi yang paling hebat ialah sekitar pukul 18.00, kandungan debu pada saat tersebut lebih dari 6000 mg/m3, jadi sudah melewati ambang batas yang dapat ditolelir untuk kesegaran udara di lingkungan (3000 mg/m3).
Salah satu akibat dari pencemaran air oleh limbah ternak ruminansia ialah meningkatnya kadar nitrogen. Senyawa nitrogen sebagai polutan mempunyai efek polusi yang spesifik, dimana kehadirannya dapat menimbulkan konsekuensi penurunan kualitas perairan sebagai akibat terjadinya proses eutrofikasi, penurunan konsentrasi oksigen terlarut sebagai hasil proses nitrifikasi yang terjadi di dalam air yang dapat mengakibatkan terganggunya kehidupan biota air.
Tinja dan urin dari hewan yang tertular dapat sebagai sarana penularan penyakit, misalnya saja penyakit anthrax melalui kulit manusia yang terluka atau tergores.Spora anthrax dapat tersebar melalui darah atau daging yang belum dimasak yang mengandung spora.
Dampak limbah ternak memerlukan penanganan yang serius. Skema berikut ini (Gambar 1) memberi gambaran akibat yang ditimbulkan oleh limbah secara umum dan manajemennya .
Penanganan Limbah Ternak
Penanganan limbah ternak akan spesifik pada jenis/spesies, jumlah ternak, tatalaksana pemeliharaan, areal tanah yang tersedia untuk penanganan limbah dan target penggunaan limbah. Penanganan limbah padat dapat diolah menjadi kompos, yaitu dengan menyimpan atau menumpuknya, kemudian diaduk-aduk atau dibalik-balik. Perlakuan pembalikan ini akan mempercepat proses pematangan serta dapat meningkatkan kualitas kompos yang dihasilkan. Setelah itu dilakukan pengeringan untuk beberapa waktu sampai kira-kira terlihat kering. Proses pembuatan kompos seperti ini menyebabkan gas metan yang terbentuk dibrbaskan ke atmosfer.
Penanganan limbah cair dapat diolah secara fisik, kimia dan biologi. Pengolahan secara fisik disebut juga pengolahan primer (primer treatment). Proses ini merupakan proses termurah dan termudah, karena tidak memerlukan biaya operasi yang tinggi.Metode ini hanya digunakan untuk memisahkan partikel-partikel padat di dalam limbah. Beberapa kegiatan yang termasuk dalam pengolahan secara fisik antara lain : floatasi, sedimentasi, dan filtrasi.
Pengolahan secara kimia disebut juga pengolahan sekunder (secondary treatment) yang bisanya relatif lebih mahal dibandingkan dengan proses pengolahan secara fisik.Metode ini umumnya digunakan untuk mengendapkan bahan-bahan berbahaya yang terlarut dalam limbah cair menjadi padat. Pengolahan dengan cara ini meliputi proses-proses netralisasi, flokulasi, koagulasi, dan ekstrasi.
Pengolahan secara biologi merupakan tahap akhir dari pengolahan sekunder bahan-bahan organik yang terkandung di dalam limbah cair. Limbah yang hanya mengandung bahan organik saja dan tidak mengandung bahan kimia yang berbahaya, dapat langsung digunakan atau didahului denghan pengolahan secara fisik.
Pemanfaatan Limbah Ternak
Berbagai manfaat dapat dipetik dari limbah ternak, apalagi limbah tersebut dapat diperbaharui (renewable) selama ada ternak. Limbah ternak masih mengandung nutrisi atau zat padat yang potensial untuk dimanfaatkan. Limbah ternak kaya akan nutrient (zat makanan) seperti protein, lemak, bahan ekstrak tanpa nitrogen (BETN), vitamin, mineral, mikroba atau biota, dan zat-zat yang lain (unidentified substances).Limbah ternak dapat dimanfaatkan untuk bahan makanan ternak, pupuk organik, energi (biogas) dan media berbagai tujuan. Pada makalah ini dibahas pemanfaatan limbah kotoran ternak ruminansia manjadi biogas saja, tanpa mengesampingkan manfaat lain yang dapat diambil.
Permasalahan limbah ternak, khususnya manure dapat diatasi dengan memanfaatkan menjadi bahan yang memiliki nilai yang lebih tinggi. Salah satu bentuk pengolahan yang dapat dilakukan adalah menggunakan limbah tersebut sebagai bahan masukan untuk menghasilkan bahan bakar biogas. Kotoran ternak ruminansia sangat baik untuk digunakan sebagai bahan dasar pembuatan biogas. Ternak ruminansia mempunyai sistem pencernaan khusus yang menggunakan mikroorganisme dalam sistem pencernaannya yang berfungsi untuk mencerna selulosa dan lignin dari rumput atau hijauan berserat tinggi. Oleh karena itu pada tinja ternak ruminansia, khususnya sapi mempunyai kandungan selulosa yang cukup tinggi. Berdasarkan hasil analisis diperoleh bahwa tinja sapi mengandung :
  1. 22.59% sellulosa,
  2. 18.32% hemi-sellulosa,
  3. 10.20% lignin,
  4. 34.72% total karbon organik,
  5. 1.26% total nitrogen,
  6. 27.56:1 ratio C:N, 0.73% P, dan 0.68% K.

Pembentukan biogas dilakukan oleh mikroba pada situasi anaerob, yang meliputi tiga tahap, yaitu tahap hidrolisis, tahap pengasaman, dan tahap metanogenik. Pada tahap hidrolisis terjadi pelarutan bahan-bahan organik mudah larut dan pencernaan bahan organik yang komplek menjadi sederhana, perubahan struktur bentuk polimer menjadi bentuk monomer.
Pada tahap pengasaman komponen monomer (gula sederhana) yang terbentuk pada tahap hidrolisis akan menjadi bahan makanan bagi bakteri pembentuk asam.Produk akhir dari gula-gula sederhana pada tahap ini akan dihasilkan asam asetat, propionat, format, laktat, alkohol, dan sedikit butirat, gas karbondioksida, hidrogen dan amoniak. Sedangkan pada tahap metanogenik adalah proses pembentukan gas metan. Sebagai ilustrasi dapat dilihat salah satu contoh bagan perombakan serat kasar (selulosa) hingga terbentuk biogas.
Biogas adalah campuran beberapa gas, tergolong bahan bakar gas yang merupakan hasil fermentasi dari bahan organik dalam kondisi anaerob, dan gas yang dominan adalah gas metan (CH4) dan gas karbondioksida (CO2). Biogas memiliki nilai kalor yang cukup tinggi, yaitu kisaran 4800-6700 kkal/m3, untuk gas metan murni (100 %) mempunyai nilai kalor 8900 kkal/m3. Produksi biogas sebanyak 1275-4318 l dapat digunakan untuk memasak, penerangan, menyeterika dan menjalankan lemari es untuk keluarga yang berjumlah lima orang per hari.
Kotoran hewan seperti kerbau, sapi, babi dan ayam telah terbukti dalam penelitian ketika diproses dalam alat penghasil biogas (digester) menghasilkan biogas yang sangat memuaskan(Harahap et al., 1980). 
Proses pembuatan biogas ini dilakukan secara biologis dengan memanfaatkan sejumlah mikroorganisme anaerob. Bakteri-bakteri anaerob yang berperan dalam tahap-tahap proses pembuatan biogas antara lain :
1. Bakteri pembentuk asam (Acidogenic bacteria) yang merombak senyawa organik menjadi senyawa yang lebih sederhana, yaitu berupa asam organik, CO2, H2, H2S.
2. Bakteri pembentuk asetat (Acetogenic bacteria) yang merubah asam organik, dan senyawa netral yang lebih besar dari metanol menjadi asetat dan hidrogen.
3. Bakteri penghasil metan (metanogens), yang berperan dalam merubah asam-asam lemak dan alkohol menjadi metan dan karbondioksida. Bakteri pembentuk metan antara lain Methanococcus, Methanobacterium, dan Methanosarcina.
Adapun proses pembuatan biogas adalah sebagai berikut. Bahan organik dimasukkan ke dalam digester, sehingga bakteri anaerob akan membusukkan bahan organik tersebut yang selanjutnya akan menghasilkan gas yang disebut biogas. Biogas yang telah terkumpul di dalam digester lalu dialirkan melalui pipa penyalur gas menuju tangki penyimpan gas atau langsung ke lokasi penggunaannya, misalnya kompor atau lampu.
Jenis limbah ternak ruminansia yang diproses sangat mempengaruhi produktivitas sistem biogas. Selain itu limbah ternak ruminansia yang diproses menjadi biogas memerlukan persyaratan dasar tertentu, yaitu persyaratan tertentu yang menyangkut:
1. Kandungan atau isi yang terkandung dalam bahan.
Salah satu cara untuk menentukan bahan organik yang sesuai untuk digunakan sebagai bahan sistem biogas adalah dengan mengetahui perbandingan Karbon (C) dan Nitrogen (N) atau disebut rasio C/N. Perubahan senyawa organik dari limbah ternak ruminansia menjadi CH4 (gas metan) dan CO2 (gas karbon dioksida) memerlukan persyaratan rasio C/N antara 20 – 25. Sehingga kalau menggunakan limbah ternak ruminansia hanya berbentuk jerami dengan rasio-C/N di atas 65, maka walaupun CH4 dan CO2 akan terbentuk, perbandingan CH4 : CO2 = 65 : 35 tidak akan tercapai. Mungkin perbandingan tersebut bernilai 45 : 55 atau 50 : 50 atau 40 : 60 serta angka-angka lain yang kurang dari yang sudah ditentukan, maka hasil biogasnya akan mempunyai nilai bakar rendah atau kurang memenuhi syarat sebagai bahan energi.
Juga sebaliknya kalau limbah ternak ruminansia yang digunakan berbentuk kotoran saja, semisal dari kotoran kambing dengan rasio C/N sekira 8, maka produksi biogas akan mempunyai bandingan antara CH4 dan CO2 seperti 90 : 10 atau nilai lainnya yang terlalu tinggi. Dengan nilai ini maka hasil biogasnya juga terlalu tinggi nilai bakarnya, sehingga mungkin akan rnembahayakan pengguna.
Hal lain yang perlu diperhatikan yaitu rasio C/N terlalu tinggi atau terlalu rendah akan mempengaruhi proses terbentuknya biogas, karena ini merupakan proses biologis yang memerlukan persyaratan hidup tertentu, seperti juga manusia.
2. Kadar air
Kadar air bahan yang terkandung dalam bahan yang digunakan, juga seperti rasio C/N harus tepat. Jika hasil biogas diharapkan sesuai dengan persyaratan yang berlaku, maka semisal limbah ternak ruminansia yang digunakan berbentuk kotoran kambing kering dicampur dengan sisa-sisa rumput bekas makanan atau dengan bahan lainnya yang juga kering, maka diperlukan penambahan air.
Tapi berbeda kalau bahan yang akan digunakan berbentuk lumpur selokan yang sudah mengandung bahan organik tinggi, semisal dari bekas dan sisa pemotongan hewan atau manure dari peternakan. Dalam bahannya sudah terkandung air, sehingga penambahan air tidak akan sebanyak pada bahan yang kering.
Air berperan sangat penting di dalam proses biologis pembuatan biogas. Artinya jangan terlalu banyak (berlebihan) juga jangan terlalu sedikit (kekurangan), ada perbandingan yang berpengaruh pada optimalisasi konversi gas metan.
3. Temperatur
Temperatur selama proses berlangsung, karena ini menyangkut kondisi optimal hidup bakteri pemroses biogas yaitu antara 27° – 28°C. Dengan temperatur itu proses pembuatan biogas akan berjalan sesuai dengan waktunya. Tetapi berbeda kalau nilai temperatur terlalu rendah , maka waktu untuk menjadi biogas akan lebih lama.
4. Bakteri penghasil metan (metanogens)
Kehadiran jasad pemroses, atau jasad yang mempunyai kemampuan untuk menguraikan bahan-bahan yang akhirnya membentuk CH4 dan CO2. Dalam limbah ternak ruminansia semisal kotoran kandang, limbah rumah pemotongan ataupun rumput dan jerami, serta bahan-bahan buangan lainnya, banyak jasad renik, baik bakteri ataupun jamur pengurai bahan-bahan tersebut didapatkan. Tapi yang menjadi masalah adalah hasil uraiannya belum tentu menjadi CH4 yang diharapkan serta mempunyai kemampuan sebagai bahan bakar.
Maka untuk menjamin agar kehadiran jasad renik atau mikroba pembuat biogas (umumnya disebut bakteri metan), sebaiknya digunakan starter, yaitu bahan atau substrat yang di dalamnya sudah dapat dipastikan mengandung mikroba metan sesuai yang dibutuhkan.
5. Aerasi
Aerasi atau kehadiran udara (oksigen) selama proses. Dalam hal pembuatan biogas maka udara sama sekali tidak diperlukan dalam bejana pembuat. Keberadaan udara menyebabkan gas CH4 tidak akan terbentuk. Untuk itu maka bejana pembuat biogas harus dalam keadaan tertutup rapat.
Masih ada beberapa persyaratan lain yang diperlukan agar hasil biogas sesuai dengan yang diharapkan semisal, pengadukan, pH dan tekanan udara. Tetapi kelima syarat tersebut sudah merupakan syarat dasar agar proses pembuatan biogas berjalan sebagaimana mestinya.
Digester (bio reaktor)
Bahan yang dapat digunakan untuk membuat digester, alat atau bejana pembuat dan penampung biogas, juga tidak perlu dari bahan yang mahal atau sukar untuk didapatkannya. Drum bekas asal masih kuat, merupakan bahan yang paling umum dipergunakan. Digester bentuk bejana dari tembok juga sering digunakan untuk proses pembuatan biogas yang lebih besar kapasitasnya. Bahan plastik juga bias dijadikan digester tapi sebaiknya memakai plastik polyotilen. Bahan-bahan yang lain juga bisa dipakai asal kedap udara.
Membuat biogas bukan semata-mata tergantung kepada bahan yang dipergunakan, kepada alat atau bejana yang digunakan, tetapi juga masih ada faktor-faktor lain yang menyertainya, yang langsung ataupun tidak langsung akan berpengaruh terhadap hasil.
Misalnya kita sudah memasukkan bahan-bahan yang diperlukan dalam bejana pembuat yang disertai dengan starter yang dibutuhkan. Tetapi ternyata beberapa hari kemudian, tekanan bejana penampung hasil tidak naik-naik. Kalau hal ini terjadi ada dua kemungkinan penyebabnya. Pertama bejana penampung hasil bocor, hingga secepatnya harus dicari dan ditambal atau proses pembuatan biogas tidak berjalan.
Keamanan
Biogas merupakan gas yang tidak berwarna, tidak berbau dan sangat tinggi dan cepat daya nyalanya. Karenanya sejak biogas berada pada bejana pembuatnya sampai digunakan untuk penerangan ataupun memasak, harus selalu dihindari kehadirannya dari api yang dapat menyebabkan kebakaran atau ledakan. Hal ini berhubungan dengan kemungkinan terjadinya kebocoran pada peralatan yang tidak diketahui.
Sifat cepat menyala biogas, juga merupakan masalah tersendiri. Artinya dari segi keselamatan pengguna. Sehingga tempat pembuatan atau penampungan biogas harus selalu berada jauh dari sumber api yang kemungkinan dapat menyebabkan ledakan kalau tekanannya besar. Untuk mengatasi masalah ini, sebaiknya setiap digester atau penampung gas metan dilengkapi dengan pengukur tekanan sehingga dapat memperkecil resiko terjadinya kecelakaan atau ledakan.
Biogas dapat dipergunakan dengan cara yang sama seperti gas-gas mudah terbakar yang lain. Pembakaran biogas dilakukan dengan mencampurnya dengan sebagian oksigen (O2). Namun demikian, untuk mendapatkan hasil pembakaran yangoptimal, perlu dilakukan pra kondisi sebelum biogas dibakar yaitu melalui proses pemurnian /penyaringan karena biogas mengandung beberapa gas lain yang tidakmenguntungkan. Sebagai salah satu contoh, kandungan gas hidrogen sulfida yang tinggi dalam biogas, jika dicampur dengan oksigen dengan perbandingan 1:20, makaakan menghasilkan gas yang sangat mudah meledak. Tetapi sejauh ini belum pernah dilaporkan terjadinya ledakan pada sistem biogas sederhana.
Limbah Biogas
Limbah biogas, yaitu kotoran ternak yang telah hilang gasnya (slurry) merupakan pupuk organik yang sangat kaya akan unsur-unsur yang dibutuhkan olehtanaman. Bahkan, unsur-unsur tertentu seperti protein, selulose, lignin, dan lain-lain tidak bisa digantikan oleh pupuk kimia. Bahan pembuat biogas juga merupakan bahan organik berkandungan nitrogen tinggi. Selama proses pembuatan kompos yang akan keluar dan tergunakan adalah unsur-unsur C, H, dan 0 dalam bentuk CH4 dan CO2. Karenanya nitrogen yang ada akan tetap bertahan dalam sisa bahan, kelak menjadi sumber pupuk organik.
Pupuk organik yang dihasilkan dari memiliki kualitas yang baik, yang merupakan sisa proses fermentasi untuk mendapatkan biogas, dikarenakan bakteri patogen dan biji tanaman gulma dalam kotoran ternak menjadi mati selama proses fermentasi, dan pupuk kandang tersebut langsung dapat digunakan sebagai pupuk terhadap tanaman.
KESIMPULAN
1. Limbah ternak ruminansia berpeluang mencemari lingkungan jika dibuang langsung ke lingkungan. Namun memperhatikan komposisinya, limbah ternak ruminansia masih dapat dimanfaatkan lagi sebagai bahan pembuatan biogas.
2. Pembentukan biogas dilakukan oleh mikroba pada situasi anaerob, yang meliputi tiga tahap, yaitu tahap hidrolisis, tahap pengasaman, dan tahap metanogenik.
3. Faktor-faktor yang mempengaruhi proses pembuatan biogas :
a. Kandungan kimia dalam bahan.
b. Kadar air.
c. Temperatur.
d. Bakteri penghasil metan.
e. Tekanan udara.
f. Aerasi.
g. Pengadukan
h. pH
4. Biogas merupakan gas yang mudah terbakar maka perlu penanganan khusus pada keamanannya.
5. Limbah biogas merupakan pupuk organik yang mempunyai kualitas tinggi.
Ada tiga kelompok bakteri yang berperan dalam proses pembentukan biogas:
1.      Kelompok bakteri fermentatif, yaitu: Steptococci, Bacteriodes, dan beberapa jenis Enterobactericeae,
2.      Kelompok bakteri asetogenik, yaitu Desulfovibrio,
3.      Kelompok bakteri metana, yaitu Mathanobacterium, Mathanobacillus, Methanosacaria, dan Methanococcus.


  




Tidak ada komentar:

Poskan Komentar